HIGH REMOVAL RATE OF CF₄ USING DC PLASMA WITHIN BUBBLES AND TRAPPING OF FLUORINE

Summary

<Background ; CF_4 is widely used in semiconductor manufacturing processes; however, CF_4 emissions must be reduced because of their large global-warming potential. > CF_4 was removed at the rate of 96.7%, using an atmospheric-pressure DC plasma within gas bubbles. Emission spectra showed that the mean electron energy might be 3 eV and the gas temperature might be 3000~3400 K. Electron energy distribution function shows that the electrons in this plasma might have sufficient energy to decompose CF_4 . Thermodynamic equilibrium compositions indicate that the gas temperature of this plasma might be sufficient for CF_4 decomposition. We consider that the water around bubbles is effective in humidifying the discharged gas, lowering the temperature required to decompose CF_4 and capturing the fluorine to achieve high removal rate.

[1] N Takeuchi, Y Ishii and K Yasuoka, Plasma Sources Sci. Technol. 21, 015006 (2012). (Y Matsuva)