Decomposition of Perfluorinated Compounds using Plasmas in Bubbles with Circulation of Exhaust Gas

Plasma within bubbles in water

WATER TREATMENT WITH PLASMA

- · Have interfacial activity
- · Used in semiconductor industry
- · Act as a carcinogen

It's necessary to decompose

Targets		Techniques		
Substances	Bond	Ozone	AOPs1	Plasma
Humic acid	double bond	0	0	0
Dioxin-like compounds	single bond	×	0	0
PFCs ² (Perfluorinated Compounds)	fluorine bond	×	×	0

¹ AOPs (Advanced oxidation processes) are chemical treatment procedures designed to remove organic materials by oxidation through reactions with hydroxyl radicals (·OH). ² PFCs are man-made fluorosurfactants and global pollutants. In May 2009 PFCs was included in Annex B of the Stockholm Convention on persistent organic pollutants.

PLASMA WITHIN BUBBLES

PFOS can be decomposed by a plasma

Many plasmas generation with gas circulation is required.

Many plasmas generation with gas circulation

Experimental technique

PFOS decomposition system with gas circulation —

	convetional	New reactor
Discharge method	DC	AC (20 kHz)
Treatment capacity	50 mL	1000 mL
Number of Plasma	1	21
Gas circulation	None	Available

Picture of plasmas in process

Experimental results

Experimental condition Target: PFOS solution

Quantity: 1000 mL Initial concentration: 50 mg/L Gas bubble: Argon (100sccm)

Inverter frequency: 20 kHz Average Power: 114 W Treating time: 600 min Total input energy: 1140 Wh

Degradation of PFOS with 21-plasmas

- 21-plasmas can decompose 91% of PFOS in 600 minute.
- The treatment capacity is up to 20 times larger than conventional DC plasma reactor.
- · Fluorocarbon gases contained in the exhaust gas are exposed to the plasma and can be decomposed.
- · Gas consumption of argon is considerably reduced using circulation of exhaust gas.

We have successfully decomposed the large amount of PFOS solution with 21-plasmas.